1. Lisch D. How important are transposons for plant evolution? Nat Rev Genet. 2013;14: 49–61. doi:10.1038/nrg3374
2. Ahmed I, Sarazin A, Bowler C, Colot V, Quesneville H. Genome-wide evidence for local DNA methylation spreading from small RNA- targeted sequences in Arabidopsis. Nucleic Acids Res. 2011;39: 6919–6931. doi:10.1093/nar/gkr324
3. Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, et al. The Arabidopsis thaliana mobilome and its impact at the species level. Zilberman D, editor. eLife. 2016;5: e15716. doi:10.7554/eLife.15716
4. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJJ, Koornneef M, et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 2007;49: 38–45. doi:10.1111/j.1365-313X.2006.02936.x
5. Fujimoto R, Kinoshita Y, Kawabe A, Kinoshita T, Takashima K, Nordborg M, et al. Evolution and control of imprinted FWA genes in the genus Arabidopsis. PLoS Genet. 2008;4: e1000048. doi:10.1371/journal.pgen.1000048
6. Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell. 2000;6: 791–802. doi:10.1016/s1097-2765(05)00090-0 7. Gazzani S, Gendall AR, Lister C, Dean C. Analysis of the Molecular Basis of Flowering Time Variation in Arabidopsis Accessions. Plant Physiology. 2003;132: 1107–1114. doi:10.1104/pp.103.021212
8. Michaels SD, He Y, Scortecci KC, Amasino RM. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA. 2003;100: 10102–10107. doi:10.1073/pnas.1531467100
9. Liu J, He Y, Amasino R, Chen X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 2004;18: 2873–2878. doi:10.1101/gad.1217304
10. Strange A, Li P, Lister C, Anderson J, Warthmann N, Shindo C, et al. Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions. PLOS ONE. 2011;6: e19949. doi:10.1371/journal.pone.0019949
11. Saze H, Kakutani T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J. 2007;26: 3641–3652. doi:10.1038/sj.emboj.7601788
12. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472: 115–119. doi:10.1038/nature09861
13. Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biology. 2017;18. doi:10.1186/s13059-017-1265-4
14. Pietzenuk B, Markus C, Gaubert H, Bagwan N, Merotto A, Bucher E, et al. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biology. 2016;17. doi:10.1186/s13059-016-1072-3
15. Baud, Agnès; Wan, Mariène; Nouaud, Danielle; Francillonne, Nicolas; Anxolabéhère, Dominique; Quesneville, Hadi. Traces of transposable elements in genome dark matter co-opted by flowering gene regulation networks. Peer Community Journal, Volume 2 (2022), article no. e14. doi : 10.24072/pcjournal.68. https://peercommunityjournal.org/articles/10.24072/pcjournal.68/
16. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8: 272–285. doi:10.1038/nrg2072
17. Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, et al. The Arabidopsis thaliana mobilome and its impact at the species level. eLife. 2016;5. doi:10.7554/eLife.15716
18. Stuart T, Eichten SR, Cahn J, Karpievitch YV, Borevitz JO, Lister R. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife. 2016;5. doi:10.7554/eLife.20777
19. Carpentier M-C, Manfroi E, Wei F-J, Wu H-P, Lasserre E, Llauro C, et al. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nature Communications. 2019;10: 24. doi:10/gfsnpq
20. Maumus F, Quesneville H. Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana. Nat Commun. 2014;5: 4104. doi:10.1038/ncomms5104
21. Maumus F, Quesneville H. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS ONE. 2014;9: e94101. doi:10.1371/journal.pone.0094101
22. Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol. 2005;1: 166–175. doi:10.1371/journal.pcbi.0010022
23. Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE. 2011;6: e16526. doi:10.1371/journal.pone.0016526
24. Jamilloux V, Daron J, Choulet F, Quesneville H. De Novo Annotation of Transposable Elements: Tackling the Fat Genome Issue. Proceedings of the IEEE. 2017;105: 474–481. doi:10.1109/JPROC.2016.2590833